

	Maximum principal stress, $P_s = 97.7 \%$, r_r	$r_{ef} = 1 mm$	
Material	Characteristic strength $ \begin{pmatrix} P_s = 97.7 \% \\ N = 2 \times 10^6 \end{pmatrix} $	Reference	
Steel	FAT 225, $m = 3$ for maximum principal stress	Olivier et al (1989 & 1994) and Hobbacher (2008)	
	FAT 200, $m = 3$ for von Mises stress		
Aluminium alloys	FAT 71	Morgenstern et al. (2004)	
Magnesium	FAT 28	Karakas et al. (2007)	
S-N curve equation standards: $C = \Delta \sigma^n$ $C = FAT$ $m = 3$	With definused in somedefin hot- ^{2}N stre $^{m} \cdot 2 \times 10^{6}$ com	I slope $m = 3$, IIW classes ned for nominal, structural spot and effective notch ss approaches are spatible with each other	

Element sizes in FEA							
Element type (displacement function)	Relative size	Size for r = 1 mm	Size for <i>r</i> = 0.05 <i>mm</i>	No. of elements over 45° arc	No. of elements over 360° arc	Estimated error	
Quadratic (e.g. with mid-size holes	$\leq \frac{r}{4}$	≤ 0.25 mm	$\leq 0.012 \ mm$	≥ 3	≥ 24	≈ 2%	
Linear	$\leq \frac{r}{6}$	$\leq 0.15 mm$	$\leq 0.008 mm$	≥ 5	≥ 40	≈ 10%	
 Where simplify notch surfation 	pradient is small, l ble linear element ce might be nece	long elements sh ts are used with o ssary.	ould be suitable.	tribution, appropri	ate stress extrapo	lation to the free	
 Sub-model meshed su^l 	<i>ling techniques</i> m b-model.	ay be required fo	r large models to e	enable computatio	on of notch stress	es in a fine-	
 Interp you. 	oolate between no	odal points to tran	isfer coarser mesh	n displacements.	Some FEA softwa	re does this for	
o The c	original coarse mo ong.	odel must have th	e same stiffness t	han the sub-mode	el. Otherwise noto	ch stresses will	
be wr	5						

