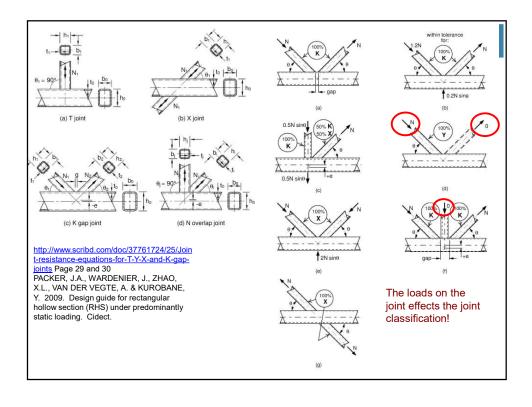
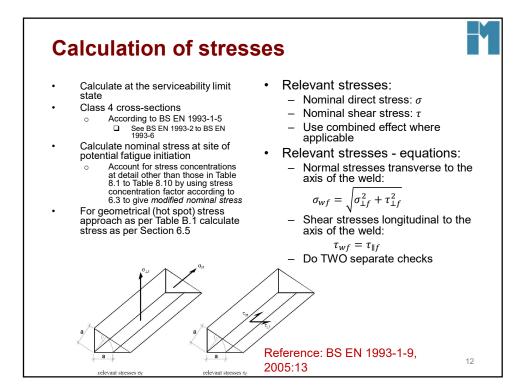
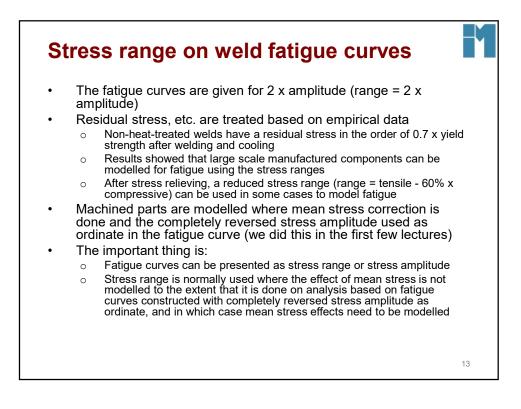
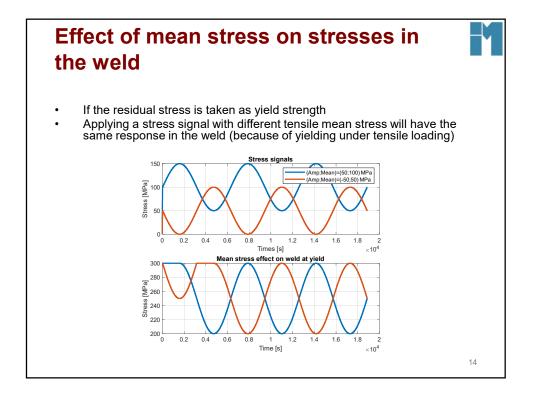
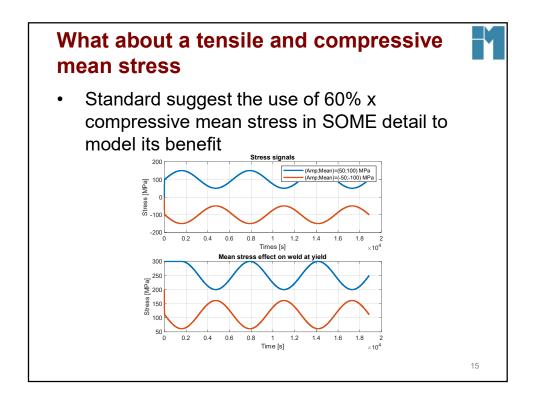

 Environment covered: Structures operating under normal atmospheric conditions Sufficient corrosion protection Regular maintenance Environment not covered: Effect of seawater corrosion Microstructural damage from high temperature > 150 °C See IIW Bulletin 520 BS 7608 for coverage of these
 Other standards referred to BS EN 1090. Execution of steel structures – Technical requirements BS EN 1990. Basis of structural design BS EN 1991. Actions on structures BS EN 1993. Design of steel structures BS EN 1993-2. Design of composite steel and concrete structures: Part2: Bridges BS EN 1999. Aluminium
See the terms and conditions in the notes issued in class $_4$

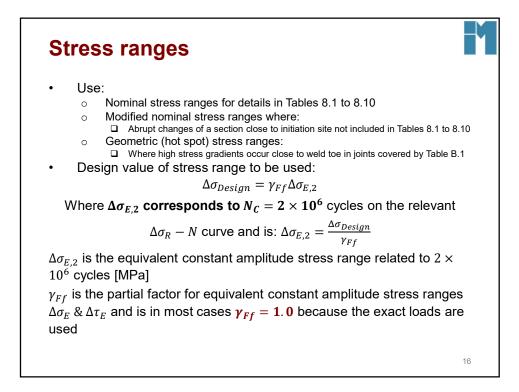


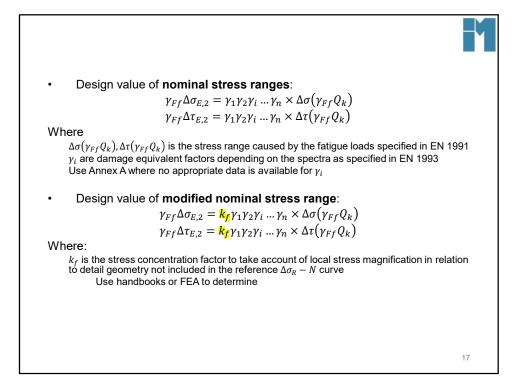

• Use p	factor for partial factor	Ŭ	Ŭ	∎ ∎			
o C c	onsequences	of failure					
0 D €	esign assessn	nent used					
	Assessment	Consequen	ce of failure				
	method	Low	High				
	method	consequence	consequence				
	Damage tolerant	1.00	1.15				
	Safe life	1.15	1.35				
	Oale life	Source: BS EN 1993-1-9, 2005:11					
			1.00				

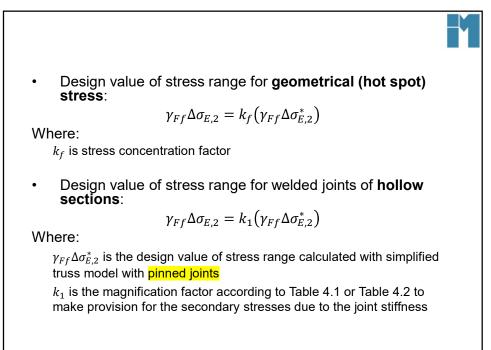


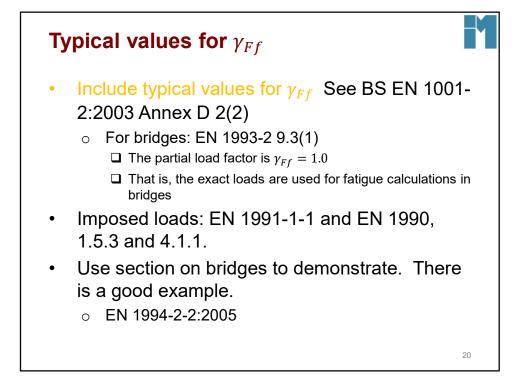


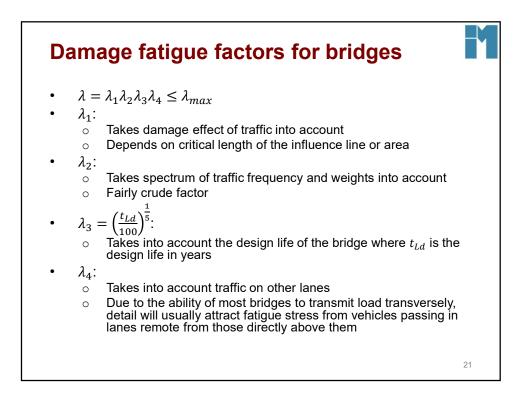

K gap joi	ints		T, Y and X joints	
	k ₁ -factors for circ	ular hollow sect	ions under in-pla	ne loading
Type of	ofjoint	Chords	Verticals	Diagonals
Gap joints	K type	1,5	1,0	1,3
Gap Joints	N type / KT type	1,5	1,8	1,4
Overlap joints	K type	1,5	1,0	1,2
Overlap joints	N type / KT type	1,5	1,65	1,25
	N 1993-1-9, 2005: -factors for recta		ections under in-	plane loading
Туре	of joint	Chords	Verticals	Diagonals
Gap joints	K type	1,5	1,0	1,5
Gap joints	N type / KT type	1,5	2,2	1,6
Overlap joints	K type	1,5	1,0	1,3
Overtap joints	N type / KT type	1,5	2,0	1,4
Reference: BS E	N 1993-1-9, 2005:	12		10

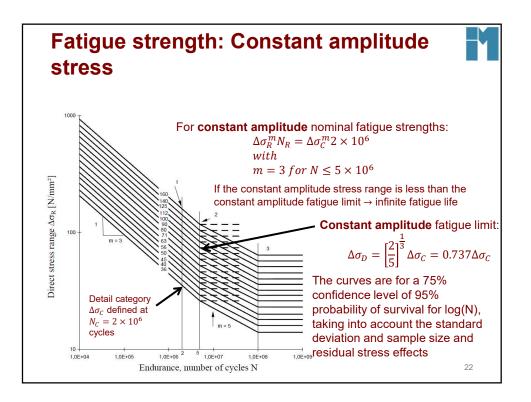


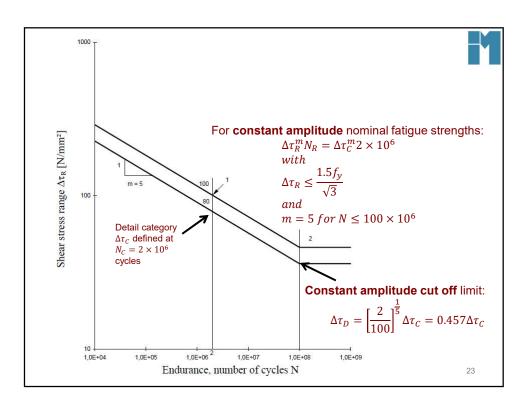


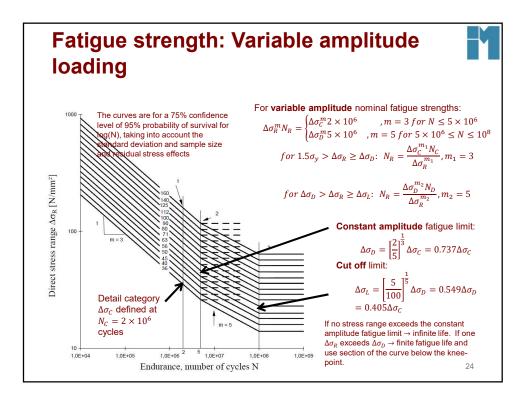


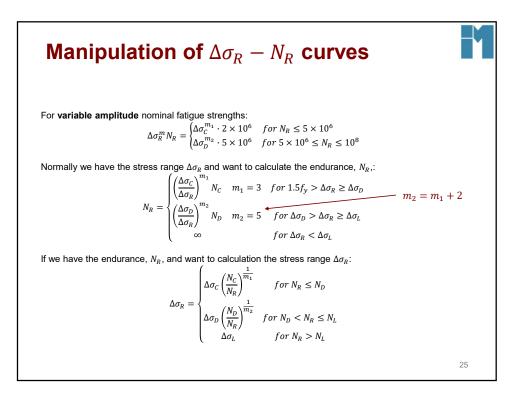


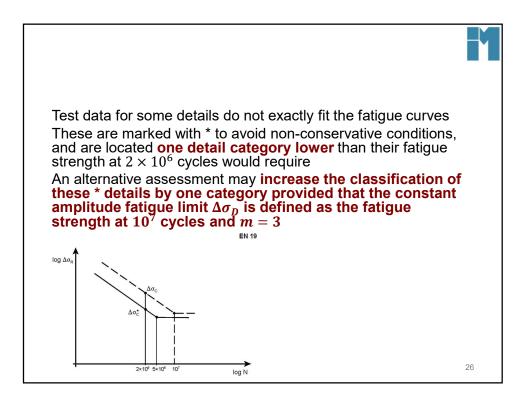


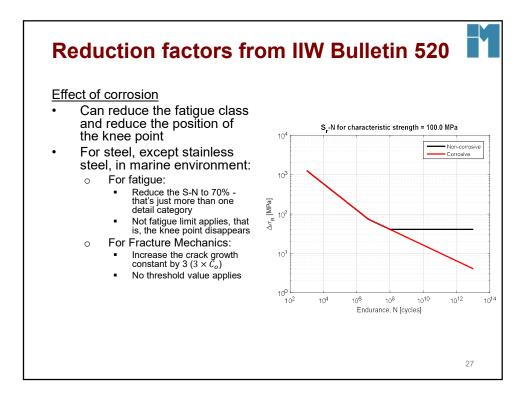


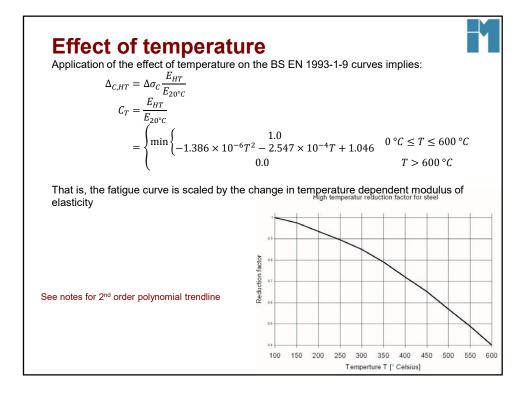


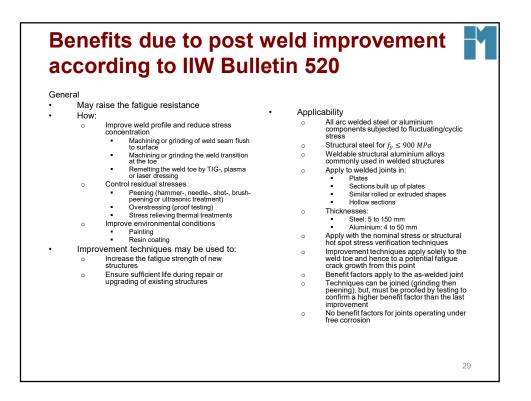

Table 4 1:	k ₁ -factors for circul	ar hollow sect	ions under in-pla	ne loading
	of joint	Chords	Verticals	Diagonals
туре			1.0	
Gap joints	K type	1,5	1,0	1,3
	N type / KT type	199 A 199	(1.04) (1.04)	1,4
Overlap joints	K type	1,5	1,0	1,2
	N type / KT type	15	1.65	1.25
	N type / KT type N 1993-1-9, 2005:11	1,5	1,65	1,25
eference: BS E	· · · · · · · · · · · · · · · · · · ·			
eference: BS E Table 4.2: k ₁	EN 1993-1-9, 2005:11			
eference: BS E Table 4.2: k ₁ Type	EN 1993-1-9, 2005:11 I-factors for rectan	gular hollow se	ections under in-	plane loading
eference: BS E Table 4.2: k ₁	EN 1993-1-9, 2005:11 I-factors for rectan	gular hollow so	ections under in-	plane loading
eference: BS E Table 4.2: k ₁ Type Gap joints	FN 1993-1-9, 2005:11 a-factors for rectan of joint K type	gular hollow so Chords 1,5	ections under in- Verticals 1,0	plane loading Diagonals 1,5
eference: BS E Table 4.2: k ₁ Type	EN 1993-1-9, 2005:11 a-factors for rectan of joint K type N type / KT type	gular hollow so Chords 1,5 1,5	ections under in- Verticals 1,0 2,2	plane loading Diagonals 1,5 1,6
eference: BS E Table 4.2: k ₁ Type Gap joints Overlap joints	FN 1993-1-9, 2005:11 -factors for rectant of joint K type N type / KT type K type	gular hollow se Chords 1,5 1,5 1,5 1,5 1,5	ections under in- Verticals 1,0 2,2 1,0	plane loading Diagonals 1,5 1,6 1,3

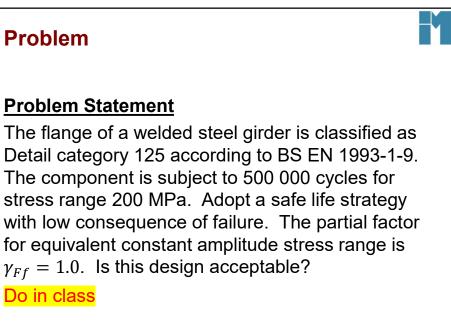








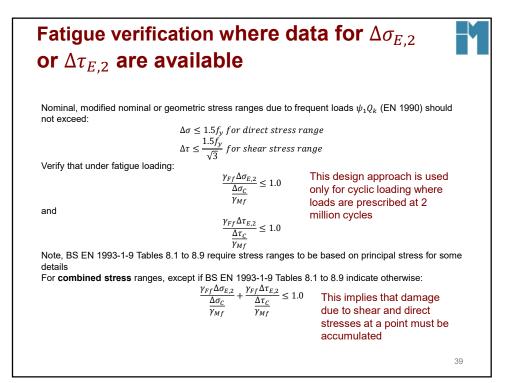


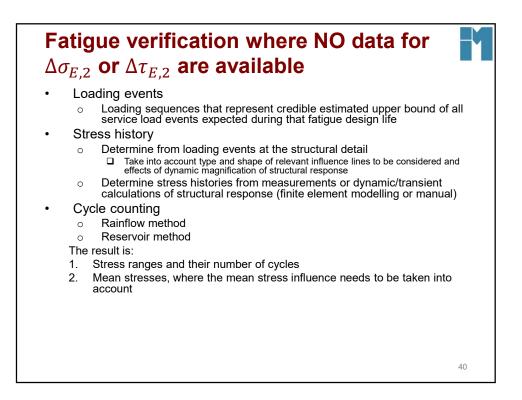


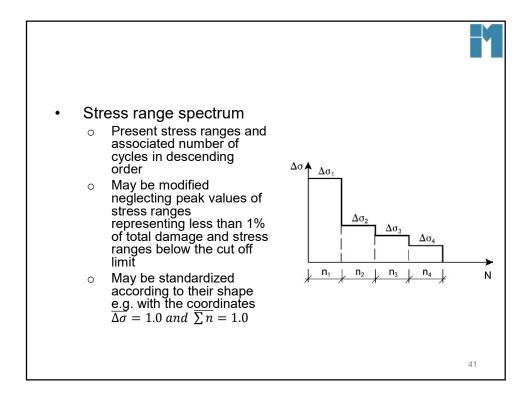
 TIG Dressing Remelt the toe in order to: Remove imperfections Produce smooth transition from the weld to plate surface Apply to PJP and CJP Tab. 3.5-3a: FAT classes for use with no 	•	\circ $\Delta \sigma_{C}$	For s 900 l 10 m	$ax \begin{cases} 1.3 \times \\ 11 \end{cases}$	
Area of application and maximum possible claim	miniai sucess	Stee		Aluminium	
Benefit at details classified in as-welded as FAT≤90 for steel or FAT≤32 for alu		1.3	3	1.3	
Max possible FAT class after improvem	ient	FAT	112	FAT 45	
Tab. 3.5-3b: FAT classes for use with s dressing	structural hot	-spot stress	at joints	improved by TIG	
Material	Load-carry wel			ad-carrying fillet and butt welds	
Mild steel, $f_y < 350$ MPa	11	2		125	
Higher strength steel, $f_y > 350$ MPa	11	2		125	31
Aluminium alloys	45			50	-

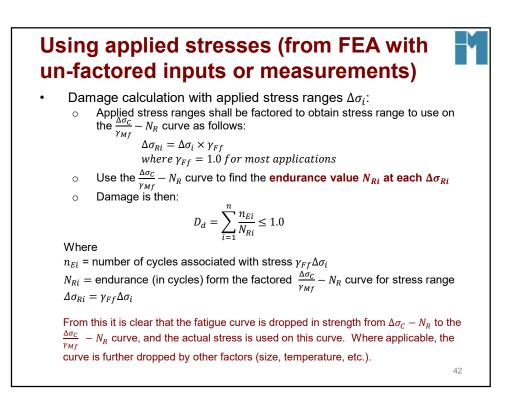
Hammer peening Plastic deformation Introduce construction 	on at the weld to mpressive residual			 Apply for thicknesses: Steel: 10 to 50 mm Aluminium: 5 to 25 mm Arc welded fillet welds with minimum leg length 0.1t where t is the thickness of the stressed plate
			•	 Special requirements Maximum of nominal
Tab. 3.5-4a: FAT classes for use with no Area of application and maximum possible claim	Mild steel	$\frac{\text{hproved by han}}{\text{Steel}}$ $f_{y} \ge 355 \text{ MPa}$	nmer peening Aluminium	compressive stress including proof loading $< 0.25 f_v$
Benefit at details classified in as-welde condition as FAT≤90 for steel or FAT≤32 for aluminium	d 1.3	1.6	1.6	• Dependent on stress ratio: • $R < 0$ effective stress range = $\Delta\sigma$
Max possible FAT after improvement	FAT 112	FAT 125	FAT 56	• $0 < R < 0.4$
Tab. 3.5-4b: FAT classes for use with str beening	cuctural hot-spot stress a	at joints improv	ed by hammer	effective stress range = maximum applied stress σ • $R > 0.4$ no benefit
Material	Load-carrying fillet welds		arrying fillet elds	
Mild steel, f _y < 350 MPa	112	1	25	
Higher strength steel, $f_{y^{\geq}} \ 350 \ MPa$	125	1	60	
Aluminium alloys	56		53	32

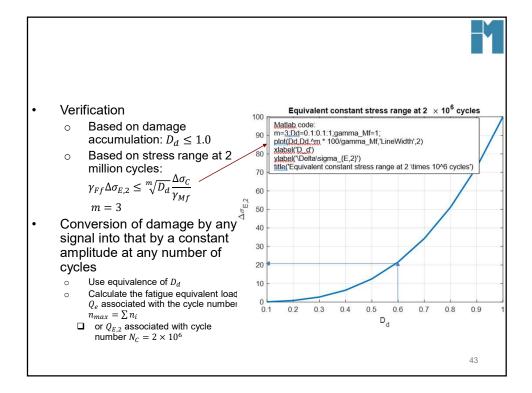
<u>Needle peening</u> Plastic deformation 	tion at the w	eld		Special requirements – Maximum of
 Introduce com stresses Tab. 3.5-5a: FAT classes for use with no 			dle neening	compressive stress including proof loading <
Area of application and maximum possible claim	Mild steel fy <355 MPa	Steel fy ≥355 MPa	Aluminium	$0.25 f_y$ – Dependent on
Benefit at details with FAT≤90 at steel or FAT≤32 at aluminium, as welded	1.3	1.6	1.6	stress ratio: • R < 0 effective
Max possible FAT after improvement	FAT 112	FAT 125	FAT 56	stress range =
Tab. 3.5-5b: FAT classes for use with storening	ructural hot-spot stre	ss at joints impre	oved by needle	benefit factor $\times \Delta \sigma$ • 0 < R ≤ 0.4 effective stress
Material	Load-carrying fille welds		arrying fillet elds	range = benefit factor x maximum
Mild steel, f _y < 350 MPa	112	1	25	 applied σ R > 0.4 no benefit
Higher strength steel, $f_y > 350$ MPa	125	1	60	
Aluminium alloys	56	3	63	

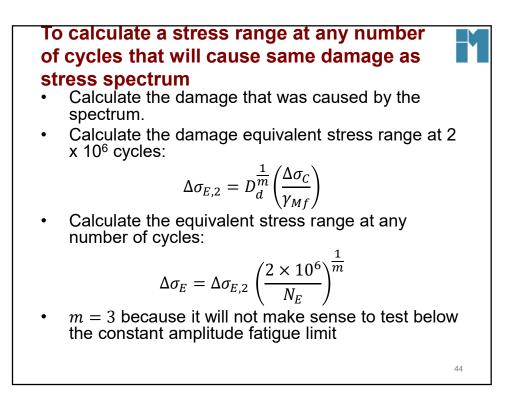

34

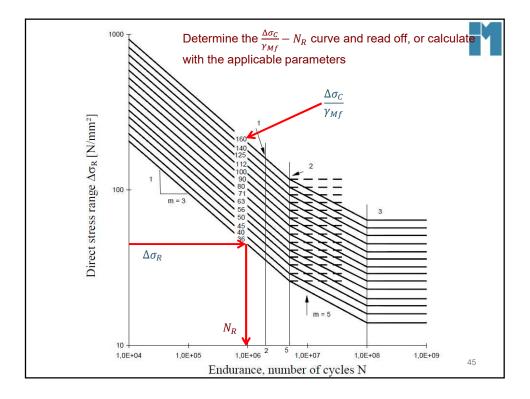

Problem

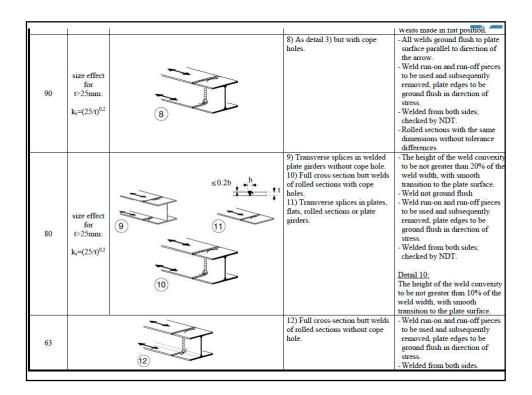

Problem statement The fatigue performance of a welded detail in a steel linkspan structure can be represented by a fatigue curve corresponding to BS EN 1993-1-9 Detail Category 36. The linkspan carries typical vehicles of weight 1, 2 and 5 ton. A linear elastic finite beam element analysis revealed the stress ranges in the welded detail as summarised in the table on the right with the proportion of vehicles carried by the ferry 70%, 28% and 2% respectively as summarised in the table. The linkspan is used twice per day. No more than one vehicle can occupy the linkspan at any one time. The design life required is equal to the service life of 40 years. Is this design sufficient if a damage tolerant with high consequence of failure strategy is implemented? A total of 50 vehicles are carried per day, and two stress cycles are caused to the linkspan per vehicle (on- and off loading).


Frequence	y of vehic	cles	50	per day
Stress cy	cles per	vehicle	2	
Design lif	e		40	years
Vehicle	Stress	Proportion	Applied	
mass	range		cycles	
[ton]	[MPa]	[%]	n_i	
1	20	70%	1022000	
2	30	28%	408800	
5	40	2%	29200	


36







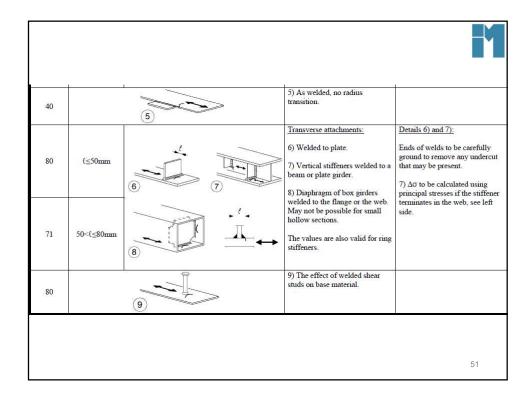
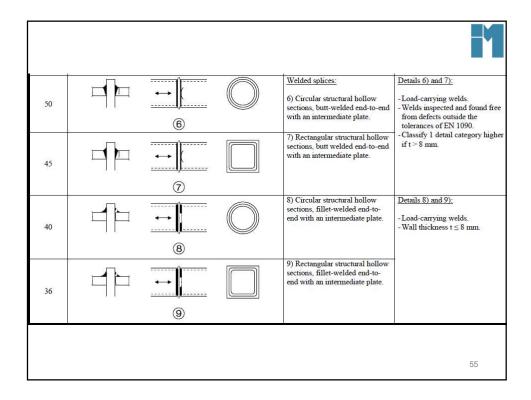
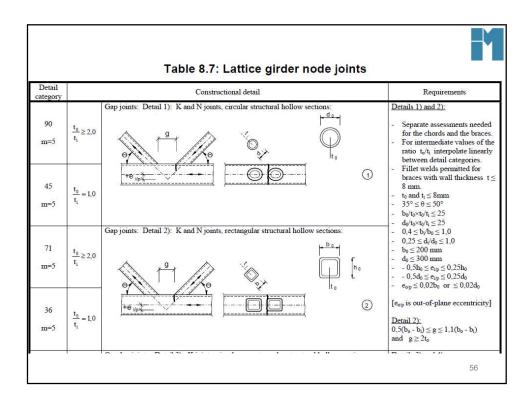
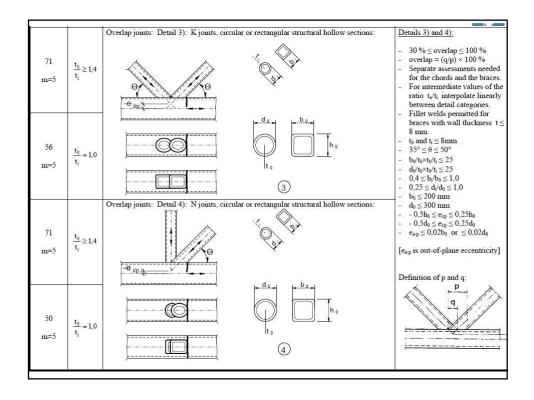

	Table 8.2: Welded b	uilt-up sections	
Detail category	Constructional detail	Description	Requirements
		Continuous longitudinal welds:	Details 1) and 2):
125		 Automatic butt welds carried out from both sides. Automatic fillet welds. Cover 	No stop/start position is permitted except when the repair is performed by a specialist and inspection is carried out to verify
		plate ends to be checked using detail 6) or 7) in Table 8.5.	the proper execution of the repair.
		 Automatic fillet or butt weld carried out from both sides but containing stop/start positions. 	
112		 Automatic butt welds made from one side only, with a continuous backing bar, but without stop/start positions. 	 When this detail contains stop/start positions category 100 to be used.
100	5	 Manual fillet or butt weld. Manual or automatic butt welds carried out from one side only, particularly for box girders 	5), 6) A very good fit between the flange and web plates is essential. The web edge to be prepared such that the root face is adequate for the achievement of regular root penetration without break-out.
100	T	7) Repaired automatic or manual fillet or butt welds for categories 1) to 6).	 Improvement by grinding performed by specialist to remove all visible signs and adequate verification can restore the original category.
80	(8)	 Intermittent longitudinal fillet welds. 	8) $\Delta \sigma$ based on direct stress in flange.

		Table 8.3: Transve	rse butt welds	
Detail category		Constructional detail	Description	Requirements
112	size effect for t>25mm: ks=(25/t) ^{0,2}	$\begin{array}{c} \\ 1 \\ 2 \\ 3 \end{array}$	Without backing bar: Transverse splices in plates and flats. Flange and web splices in plate gurders before assembly. Full cross-section butt welds of rolled sections without cope holes. Transverse splices in plates or flats tapered in width or in thickness, with a slope ≤ ¼. 	 All welds ground flush to plate surface parallel to direction of the arrow. Weld run-on and run-off pieces to be used and subsequently removed, plate edges to be ground flush in direction of stress. Welded from both sides; checked by NDT. Detail 3): Applies only to joints of rolled sections, cut and rewelded.
90	size effect for t>25mm: k _s =(25/t) ^{0,2}	$ \begin{array}{c} \leq 0.1b & b \\ \leq 1/4 & 1 \\ \leq 5 & \\ 6 & \\ \hline \end{array} $	5) Transverse splices in plates or flats. 6) Full cross-section butt welds of rolled sections without cope holes. 7) Transverse splices in plates or flats tapered in width or in thickness with a slope ≤ ½. Translation of welds to be machined notch free.	The height of the weld convexit to be not greater than 10% of the weld width, with smooth transition to the plate surface. Weld run-on and run-off picces to be used and subsequently removed, plate edges to be ground flush in direction of stress. Welde from both sides; checked by NDT. Details 5 and 7: Welds made in flat position.
				47

Detail category	Constructional detail	Description	Requirements
36		 Butt welds made from one side only. 	13) Without backing strip.
71	size effect for $k=(25/n)^{6/2}$ (3)	 Butt welds made from one side only when full penetration checked by appropriate NDT. 	
71	size effect for r>25mm:	With backing strip: 14) Transverse splice. 15) Transverse butt weld tapered in width or thickness with a slope ≤ ¼. Also valid for curved plates.	Details 14) and 15): Fillet welds attaching the backing strip to terminate ≥ 10 mm from the edges of the stressed plate. Tack welds inside the shape of butt welds.
50	size effect for ≥ 25 mm: $k_{z}=(25/t)^{9/2}$ (16)	 16) Transverse butt weld on a permanent backing strip tapered in width or thickness with a slope ≤ ¼. Also valid for curved plates. 	16) Where backing strip fillet welds end < 10 mm from the plate edge, or if a good fit canno be guaranteed.
	effect for t>25mm and/or eralization for eccentricity: $\frac{(25)}{t_1}^{0.2} / \left(1 + \frac{6e}{t_1} \frac{t_1^{1.5}}{t_1^{1.5} + t_2^{1.5}}\right)$ t_2	17) Transverse butt	

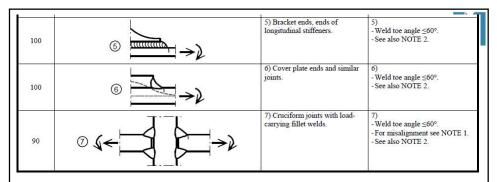

Detail category		Constructional detail	Description	Requirements
80	L≤50mm	\sim	Longitudinal attachments: 1) The detail category varies	The thickness of the attachment must be less than its height. If no see Table 8.5, details 5 or 6.
71 63	50 <l≤80mm 80<l<100mm< td=""><td></td><td>according to the length of the attachment L</td><td>see Table 6.5, details 5 of 0.</td></l<100mm<></l≤80mm 		according to the length of the attachment L	see Table 6.5, details 5 of 0.
56	L>100mm		attachinkin E.	
71	L>100mm α<45°		2) Longitudinal attachments to plate or tube.	
80	r>150mm	3	3) Longitudinal fillet welded gusset with radius transition to plate or tube; end of fillet weld reinforced (full penetration); length of reinforced weld > r.	Details 3) and 4): Smooth transition radius r forme by initially machining or gas cutting the gusset plate before
90	$\frac{r}{L} \ge \frac{1}{3}$ or r>150mm		 Gusset plate, welded to the edge of a plate or beam flange. 	welding, then subsequently grinding the weld area parallel to the direction of the arrow so that the transverse weld toe is fully removed.
71	$\frac{1}{6} \leq \frac{r}{L} \leq \frac{1}{3}$			
50	$\frac{r}{L} < \frac{1}{6}$	L: attachment length as in detail 1, 2 or 3		
40		5	5) As welded, no radius transition.	




Detail category	Constructional detail	Description	Requirements		
80	(<50 mm all t [mm] ► ℓ ◄	Cruciform and Tee joints:	 Inspected and found free from discontinuities and misalignments 		
71	50<(<80 all t	1) Toe failure in full penetration			
63	80<€≤100 all t •	t T butt welds and all partial	EN 1090.		
56	100<€≤120 all t	 penetration joints. 			
56	(>120 t≤20		2) For computing $\Delta \sigma$, use		
50	120<€≤200 t>20		modified nominal stress.		
50	(>200 20⊲≤30	1008			
45	200<€≤300 t>30		3) In partial penetration joints two		
1055	(>300 30 <t≤50< td=""><td></td><td>fatigue assessments are required.</td></t≤50<>		fatigue assessments are required.		
40	(>300 t>50 flexible panel	2) Toe failure from edge of	Firstly, root cracking evaluated according to stresses defined in		
As detail 1 in Table 8.5	2	peaks at weld ends due to local plate deformations.	$\Delta \sigma_w$ and category 80 for $\Delta \tau_w$. Secondly, toe cracking is evaluated by determining $\Delta \sigma$ in the load-carrying plate. Details 1) to 3): The misalignment of the load-		
36*		3) Root failure in partial penetration Tee-butt joints or fillet welded joint and effective full penetration in Tee-butt joint	carrying plates should not exceed 15 % of the thickness of the intermediate plate.		
	>10 mm	Overlapped welded joints:	4) $\Delta\sigma$ in the main plate to be		
As detail 1 in Table 8.5		4) Fillet welded lap joint.	 calculated on the basis of area shown in the sketch. 5) Δσ to be calculated in the overlapping plates. 		
	stressed area of ma	in panel: slope = 1/2 Overlapped;			
45*	5)	5) Fillet welded lap joint.	Details 4) and 5): - Weld terminations more than 10 mm from plate edge. - Shear cracking in the weld should be checked using detail 8).		

56* 50 45 40 36	t₂ <t t≤20 20<t≤30 30<t≤50 t>50 -</t≤50 </t≤30 </t 	t,≥t - t≤20 20 <t≤30 30<t≤50 t>50</t≤50 </t≤30 		Cover plates in beams and plate girders: 6) End zones of single or multiple welded cover plates, with or without transverse end weld.	6) If the cover plate is wider than the flange, a transverse end weld is needed. This weld should be carefully ground to remove undercut. The minimum length of the cover plate is 300 mm. For shorter attachments size effect see detail 1).	
56	-10		reinforced transverse end weld $\leq 1/4$ (7) $(5t_c)$ (14)	7) Cover plates in beams and plate girders. t _c 5t _c is the minimum length of the reinforcement weld.	7) Transverse end weld ground flush. In addition, if $t_c>20mm$, front of plate at the end ground with a slope ≤ 1 in 4.	
80 m=5	8	1	>10 mm	 8) Continuous fillet welds transmitting a shear flow, such as web to flange welds in plate girders. 9) Fillet welded lap joint. 	 8) Δτ to be calculated from the weld throat area. 9) Δτ to be calculated from the weld throat area considering the total length of the weld. Weld terminations more than 10 mm from the plate edge, see also 4) and 5) above. 	
see EN 1994-2 (90 m=8)		(1)		Welded stud shear connectors: 10) For composite application	10) $\Delta \tau$ to be calculated from the nominal cross section of the stud.	
71		\Leftrightarrow		11) Tube socket joint with 80% full penetration butt welds.	 Weld toe ground. Δσ computed in tube. 	
40	Ó	Sum Bun		12) Tube socket joint with fillet welds.	12) $\Delta\sigma$ computed in tube.	

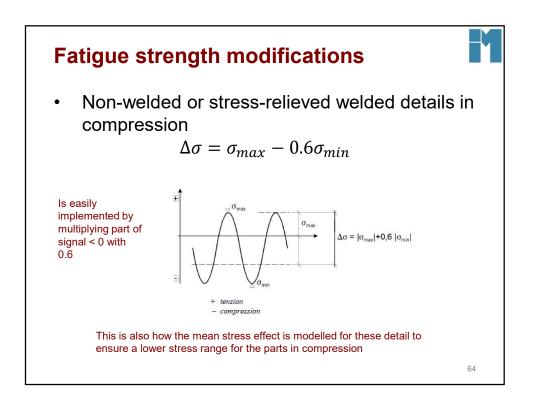
Detail category	Constructional detail	Description	Requirements		
71		1) Tube-plate joint, tubes flatted, butt weld (X-groove)	1) $\Delta\sigma$ computed in tube. Only valid for tube diameter less than 200 mm.		
71		2) Tube-plate joint, tube slitted and welded to plate. Holes at end of slit.	 2) Δσ computed in tube. Shear cracking in the weld shou be verified using Table 8.5, deta 		
63	α>45°		8).		
71		<u>Transverse butt welds:</u> 3) Butt-welded end-to-end connections between circular structural hollow sections.	Details 3) and 4): -Weld convexity ≤ 10% of weld width, with smooth transitions. -Welded in flat position, inspected and found free from		
56		4) Butt-welded end-to-end connections between rectangular structural hollow sections.	defects outside the tolerances EN 1090. - Classify 2 detail categories higher if t > 8 mm.		
71		Welded attachments: 5) Circular or rectangular structural hollow section, fillet- welded to another section.	 5) Non load-carrying welds. Width parallel to stress direction (≤ 100 mm. Other cases see Table 8.4. 		

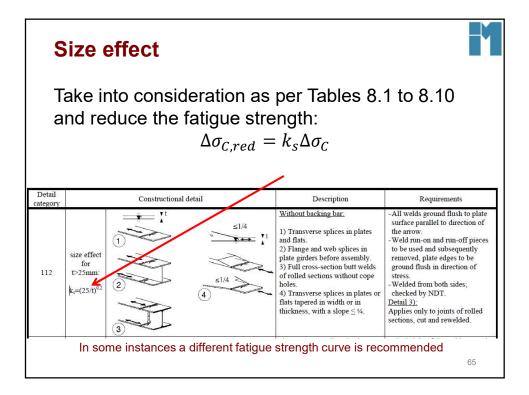

Detail category		Constructional detail	Description	Requirements		
80	t≤12mm	<u> </u>	1) Continuous longitudinal stringer, with additional cutout in cross girder.	1) Assessment based on the dire stress range $\Delta \sigma$ in the longitudir stringer.		
71	t>12mm					
80	t≤12mm	V	2) Continuous longitudinal stringer, no additional cutout in cross girder.	2) Assessment based on the direction stress range $\Delta \sigma$ in the stringer.		
71	t>12mm		diff (for a			
36			 Separate longitudinal stringer each side of the cross girder. 	3) Assessment based on the dire stress range $\Delta \sigma$ in the stringer.		
71		() () () () () () () () () () () () () (Joint in rib, full penetration butt weld with steel backing plate. 	4) Assessment based on the dire stress range $\Delta \sigma$ in the stringer.		

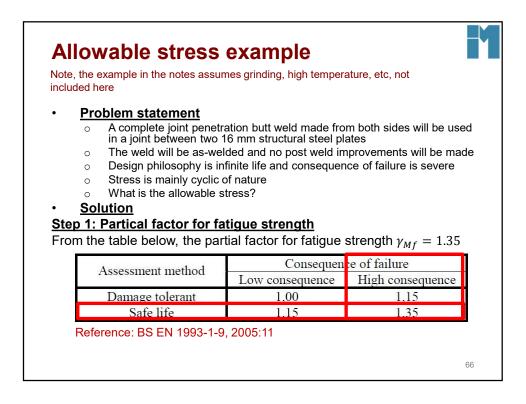
112	As detail 1, 2, 4 in Table 8.3	5) Full penetration butt weld in rib, welded from both sides, without backing plate.	5) Assessment based on the direct stress range Δσ in the stringer. Tack welds inside the shape of butt welds
90	As detail 5, 7 in Table 8.3		but weats.
80	As detail 9, 11 in Table 8.3		
71		 Critical section in web of cross girder due to cut outs. 	6) Assessment based on stress range in critical section taking account of Vierendeel effects. NOTE In case the stress range is determined according to EN 1993-2, 9.4.2.2(3), detail category 112 may be used.
71	$ \begin{array}{c} M_{i} & M_{r} \\ \hline M_{u} & S^{2} \operatorname{mm} \\ M_{w} & S^{2} \operatorname{mm} \\ \hline \end{array} $ $ \Delta \sigma = \frac{\Delta M_{w}}{W_{w}} \\ \hline W_{w} & S^{2} \operatorname{mm} \\ \hline \end{array} $	Weld connecting deck plate to trapezoidal or V-section rib 7) Partial penetration weld with a ≥ t	 Assessment based on direct stress range from bending in the plate.
50	filet weld M,	8) Fillet weld or partial penetration welds out of the range of detail 7)	 Assessment based on direct stress range from bending in the plate.

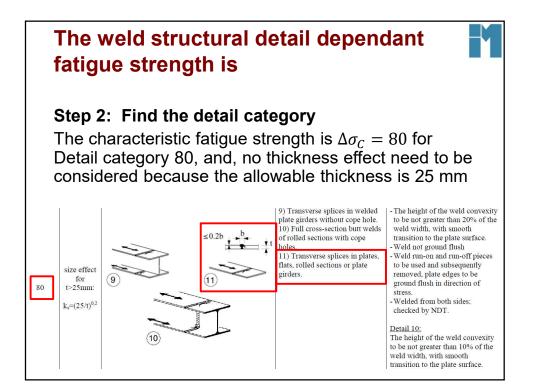
Detail category	2	Constructional detail	Description	r S Requirements	
80	t≤12mm	hinnek (Jacoba	1) Connection of longitudinal stringer to cross girder.	1) Assessment based on the dire stress range $\Delta \sigma$ in the stringer.	
71	t>12mm				
56			2) Connection of continuous longitudinal stringer to cross girder. $\Delta \sigma = \frac{\Delta M_s}{W_{\text{met},s}}$ $\Delta \tau = \frac{\Delta V_s}{A_{\text{w,met},s}}$ Check also stress range between stringers as defined in EN 1993-2.	2) Assessment based on combining the shear stress range $\Delta \sigma$ than direct stress range $\Delta \sigma$ the web of the cross girder, as a equivalent stress range: $\Delta \sigma_{eq} = \frac{1}{2} \left(\Delta \sigma + \sqrt{\Delta \sigma^2 + 4\Delta \tau} \right)^2$	

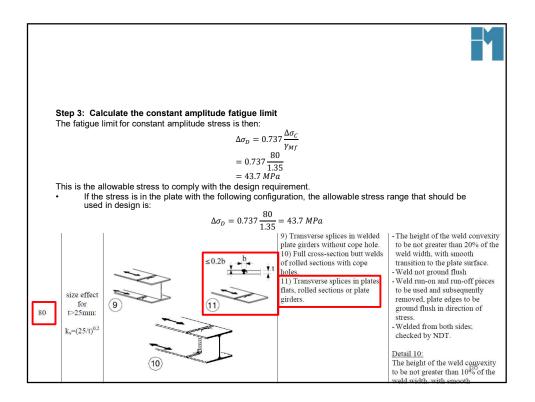
Detail category	Constructional detail	Description	Requirements		
160		1) Rolled I- or H-sections	1) Vertical compressive stress range $\Delta\sigma_{vert}$ in web due to wheel loads		
71	2	2) Full penetration tee-butt weld	2) Vertical compressive stress range $\Delta \sigma_{vert}$ in web due to wheel loads		
36*	3	 Partial penetration tee-butt welds, or effective full penetration tee-butt weld conforming with EN 1993-1-8 	3) Stress range $\Delta \sigma_{vert}$ in weld throat due to vertical compression from wheel loads		
36*	@]]	4) Fillet welds	 Stress range Δσ_{vert} in weld throat due to vertical compression from wheel loads 		
71		5) T-section flange with full penetration tee-butt weld	5) Vertical compressive stress range $\Delta\sigma_{vart}$ in web due to wheel loads		
36*	€ T	6) T-section flange with partial penetration tee-butt weld, or effective full penetration tee-butt weld conforming with EN 1993-1-8	6) Stress range $\Delta \sigma_{vert}$ in weld throat due to vertical compression from wheel loads		
36*		7) T-section flange with fillet welds	7) Stress range $\Delta \sigma_{vert}$ in weld throat due to vertical compression from wheel loads		

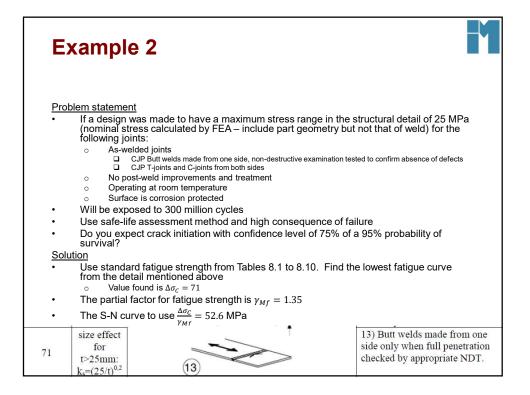

oes of but			
	t welded attachments t welds in cruciform joints		
oes of fille	t welds in cruciforni joints	with geometric (hot sp	ot) stress method
Detail itegory	Constructional detail	Description	Requirements
112	◎ (←>)	1) Full penetration butt joint.	 - All welds ground flush to plate surface parallel to direction of the arrow. - Weld run-on and run-off pieces to be used and subsequently removed, plate edges to be ground flush in direction of stress. - Welded from both sides, checked by NDT. - For misalignment see NOTE 1.
100	◎ (←>)	2) Full penetration butt joint.	 Weld not ground flush Weld run-on and run-off pieces to be used and subsequently removed, plate edges to be ground flush in direction of stress. Welded from both sides. For missignment see NOTE 1.
100	3 € ←	3) Cruciform joint with full penetration K-butt welds.	3) - Weld toe angle ≤60°. - For misalignment see NOTE 1.
100	JI.	 Non load-carrying fillet welds. 	4) - Weld toe angle ≤60°. - See also NOTE 2.

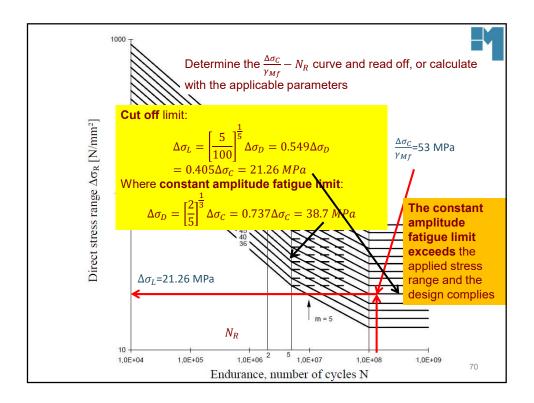


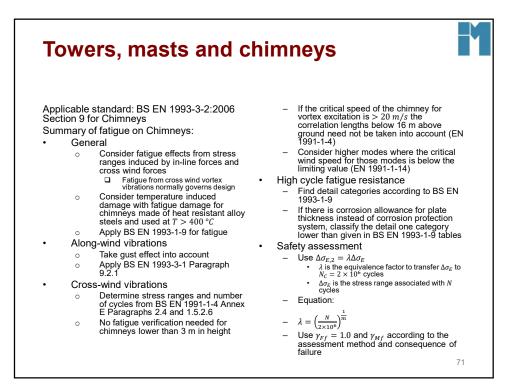

Not covered by these tables:

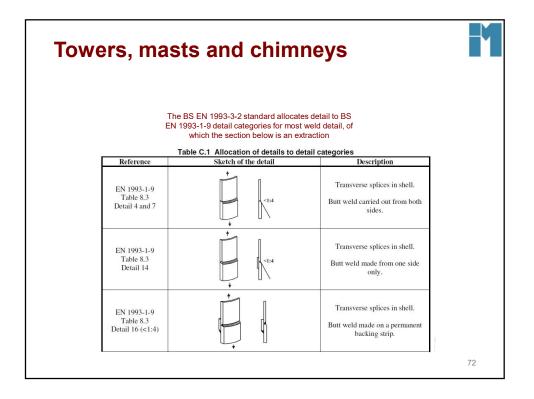

- 1. Effects of misalignment. Consider explicitly in the determination of stress. This means, the finite element analysis results will model the effect of misalignment.
- 2. Fatigue initiation from the root followed by propagation through the throat.

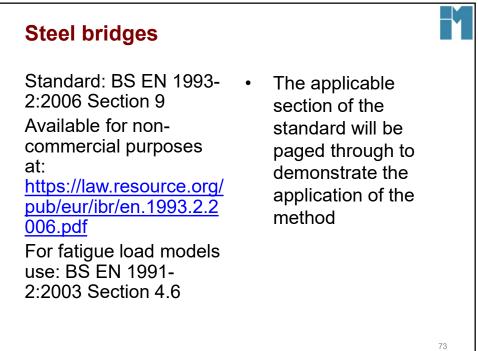

63

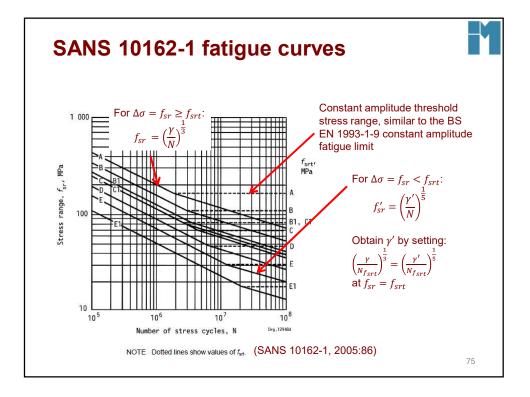


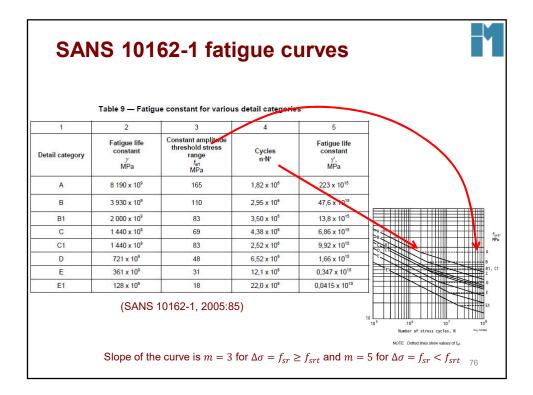


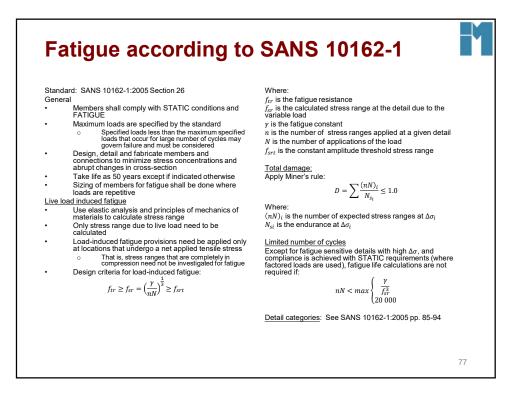


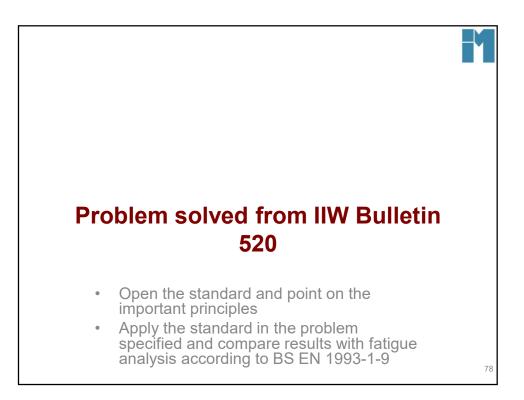


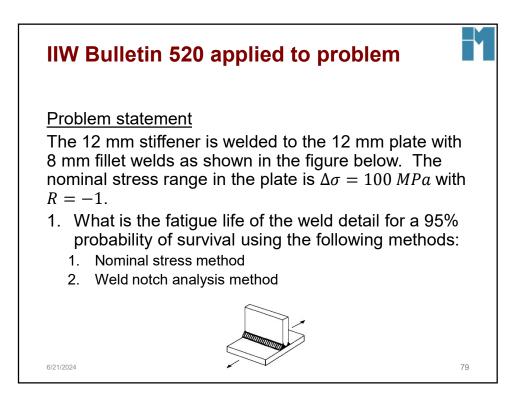


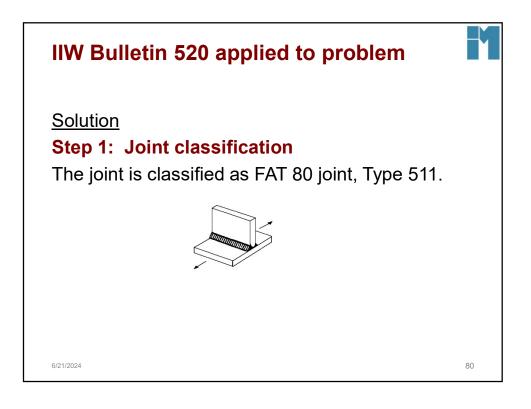


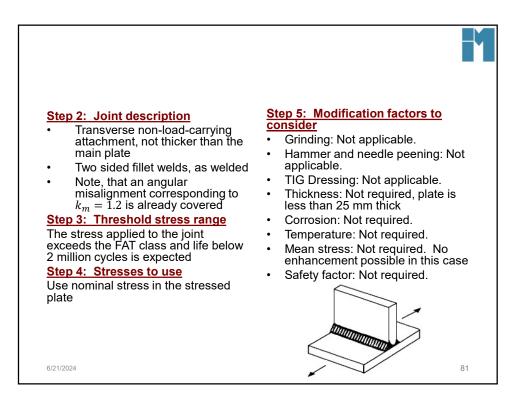


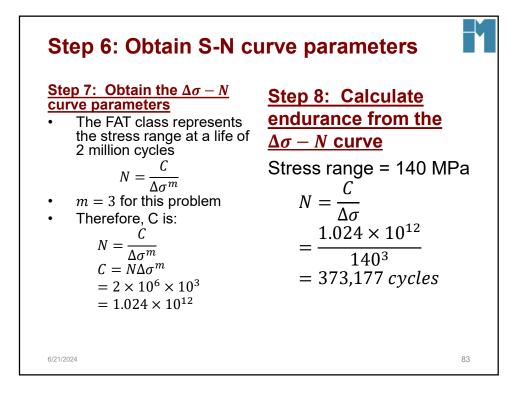


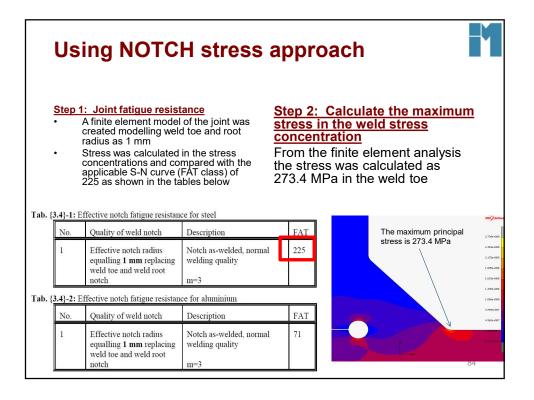


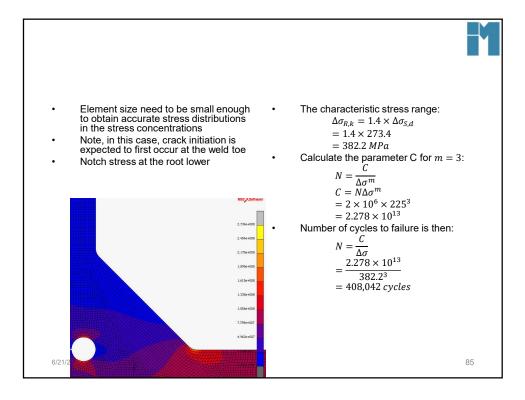

Tab	le 2 — Gi								consi	derec	l as one	S
		1	chara	cteri	tic ci	ane a	ction	L				
1	2	3	4	5	6	7	8	9	10	11	12	13 14
			<u>.</u>				Gr	oups	of load	ls		<u>Standard:</u> SANS 10160-6, Section
Load	Symbol	Clause			Ulti	mate	limit	state			Test load	5.11
			1	2	3	4	5	6	7	8	9	Fatigue loads: Effects of fatigue on crane
Self-weight of crane	$Q_{c,k}$	5.6	φ ₁	ϕ_1	1	ϕ_4	ϕ_4	ϕ_4	φ ₄	1	ϕ_1	supporting structures shall be considered
Hoist load	$Q_{\rm hl,k}$	5.6	ϕ_2	\$3	-	ϕ_4	ϕ_4	ϕ_4	ϕ_4	-	-	 Carried out for loading groups 1, 2, 3, 4, 6, 7 and 8
Part of hoist load	$\eta Q_{\rm hl,k}$ ^a	5.6	1		-	~	20	\simeq	- 24	1		Number of stress cycles for fatigue shall be determined
Acceleration of crane bridge	$H_{\mathrm{T}}, H_{\mathrm{L}}$	5.7	ϕ_5	ϕ_5	ϕ_5	ϕ_5	20	\simeq	- 23	~	ϕ_5	in accordance with the intended use and design li
Skewing of crane bridge	$H_{\rm S}$	5.7	-	-		~	1	\simeq	-		<u>-</u> 22	of the structure <u>Process followed:</u>
Acceleration or braking of crab or hoist block	<i>H</i> _{T,3}	5.7	-	~	-	-	=	1	~	æ	5 8	 Calculated stress response for load cases Determine stress range
Misalignment of crane wheels or gantry rails	H_{M}	5.7	,-	-	-	-		-	1			Apply assessment method and consequence of failure Do fatigue according to
Test load	Q_{T}	5.10	-		-	-		324	-	-	ϕ_{6}	SANS 10162-1:2005 Section 26
Buffer force	H _B	5.12	-	-	-	-	-0	-	-	-	- 1	
Tilting force	$H_{\tau \Delta}$	5.12	-	-	-					-		

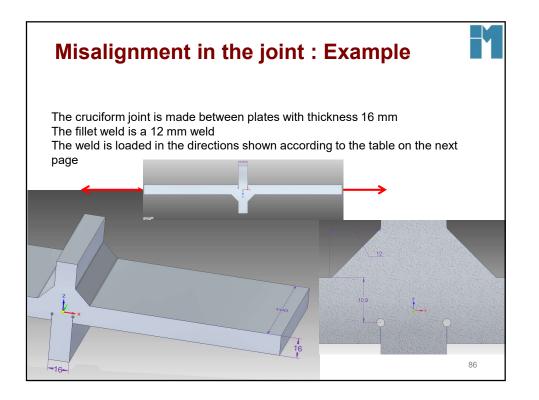


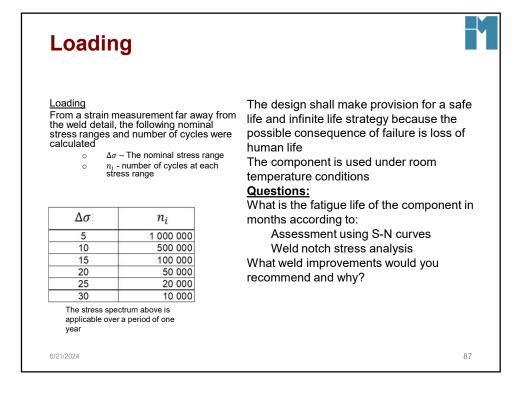


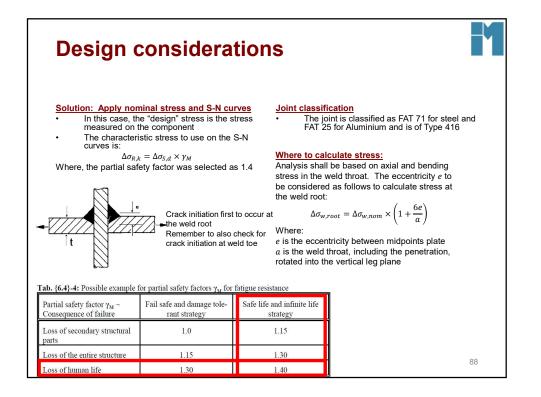


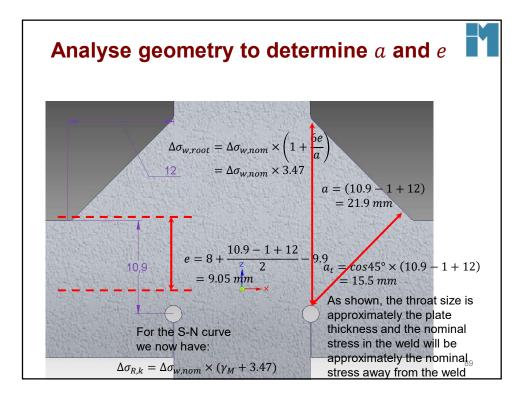


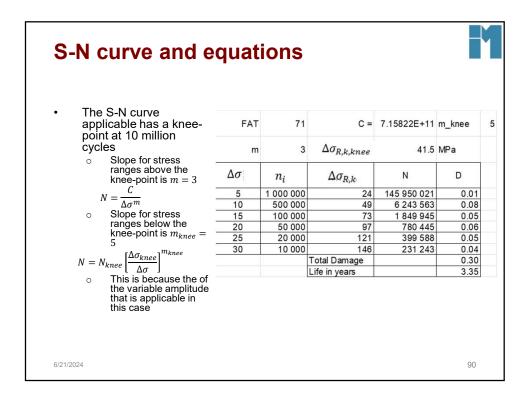


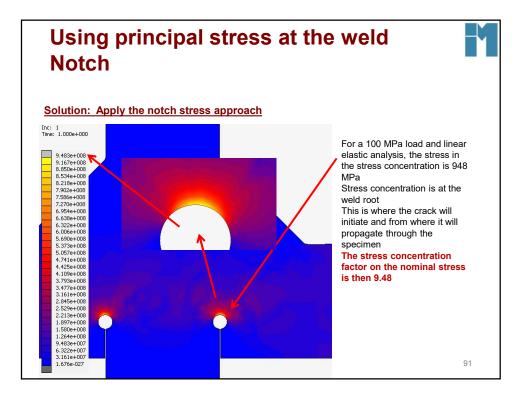


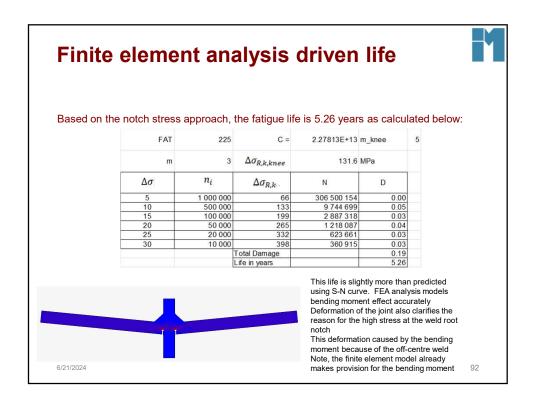

Step : Partial loading	safety factor f	or	partial
 Step 6: Partial factor for fation resistance Normally the characteristic range Δσ_{Rk} is determinent N curve at the number of modified to obtain the derange Δσ_{S,d} ≤ Δσ_{Rk}/γ_M Partial safety factor obtain shown in the table below Tab. {6.4}-4: Possible example for the statement of the sta	ic stress d from the S- cycles and sign stress ned as	rang case The stre life α Δ	design stress ge was given in this e as 100 MPa characteristic ss range to use for calculation is then: $\sigma_{R,k} = 1.4 \times \Delta \sigma_{S,d}$ = 140 MPa atigue resistance
Partial safety factor γ _M → Consequence of failure	Fail safe and damage tole rant strategy	-	Safe life and infinite life strategy
Loss of secondary structural parts	1.0		1.15
Loss of the entire structure	1.15		1.30
Loss of human life	1.30		1.40

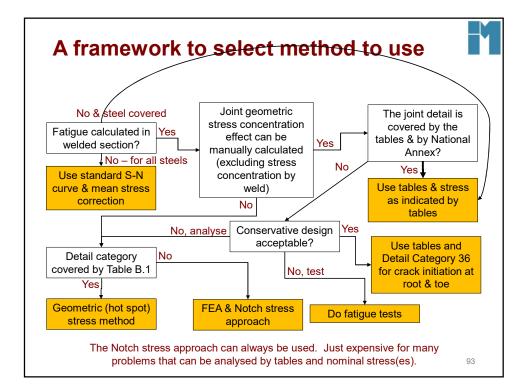


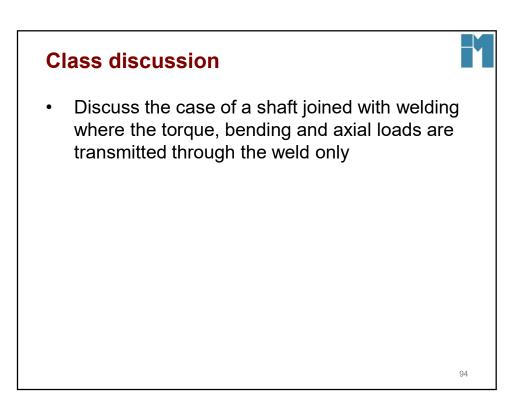


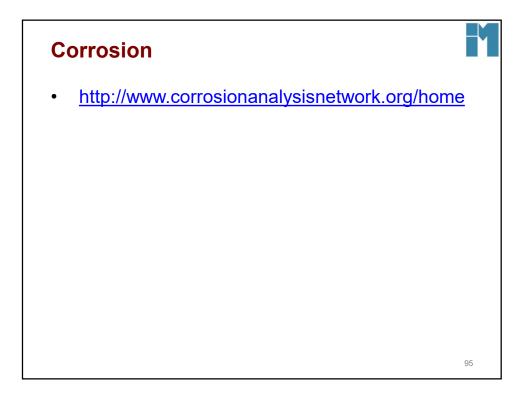


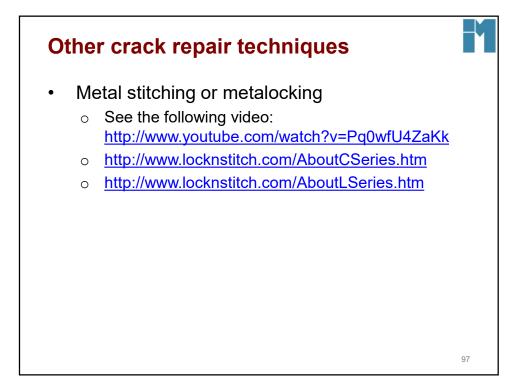


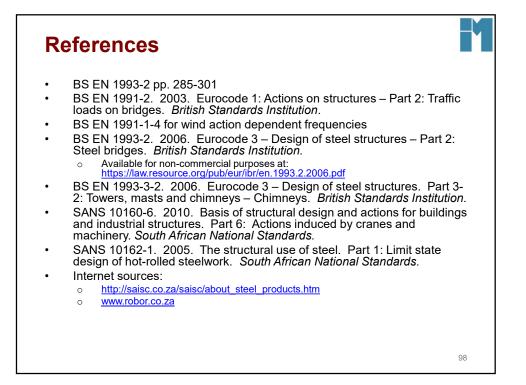












Fry: Collect (BS 76 vibratir Found limits c	ed data that confirms th 08) and 5 × 10 ⁶ (EN 19 g equipment operating that continuing Sr-N cu	93-1-9 & other) not valid for fat in a mine process plant (corros	mits (endurance limits) at 1×10^7 ricated, corrosion protected,	
 Recommendation 		rves at slope $m = 3$ for cycles f vative for unprotected details in	rom constant amplitude fatigue	
0	Endurance limit: \Box 4 × 10 ⁸ cycles: C	eyond 1×10^7 cycles at slope <i>m</i> corrosion protected detail reas that are continuously wet v		
BS 7608, 2.3 Weld detai	% probability of failur $S_o, 10^7 cycles$	e Endurance limit for typical	Endurance limit for areas at	
		conditions on vibrating screens, S_r at 4×10^8 cycles, knee at 10^7 ,	bottom of screen that are exposed to corrosion, S_r at 1 × 10^9 cycles, knee at 10^7 ,	
		slope = m + 2	slope = m + 2	
В	100	54	46	
С	78	40	34	
D	53	26	21	
E	47	22	19	
F	40	19	16	
F2	35	17	14	
G	29	14	12	
_{6/21/2024} W	25	12	10 96	

