

[mm] 0.51 Aluminium alloys	
0.51 Aluminium alloys	
0.25 Annealed or normalized low-carbon steels (BHN ~ 1	
0.064 Quenched and tempered steels (BHN ~ 360)	
0.0254 Highly hardened steels (BHN ~ 600)	

Surf Calc	ace finish r ulated	nodifying f	actors -	
 Si ac (http:// (http:// 	urface finish n cording to Ro /www.roymech.co.uk/Useful_Tables/ /ith	nodifying fact symech $C_f = a \times S_{ut}^b$	ors calculated	I
	Surface finish	a [MPa]	b	
	Ground	1.58	-0.085	
	Machined or Cold Drawn	4.51	-0.265	
	Hot Rolled	57.7	-0.718	
	As Forged	272	-0.995	
6/19/2024		54		

Modifying f	actor - Reliat	oility	
	Reliability $1-p_f$	C _r	
	0.5	1	
	0.9	0.897	
	0.95	0.868	
	0.99	0.814	
	0.999	0.753	
	0.9999	0.702	
	0.99999	0.659	
	0.999999	0.620	
http://w	ww.roymech.co.uk/Useful_Tables/Fatigu	e/FAT_Mod_factors.h	tml
6/19/2024	61		

Ser and	Segregation of chromium particles		
1	Source: (ASM Vol. 9, 1999, p. 758)	I D	
-	Source: (ASM Vol. 9, 1999, p. 758) Defect	Fatigue strength reduction	
	Source: (ASM Vol. 9, 1999, p. 758) Defect	Fatigue strength reduction factor	
_	Source: (ASM Vol. 9, 1999, p. 758) Defect None	Fatigue strength reduction factor 1.00	
	Source: (ASM Vol. 9, 1999, p. 758) Defect None Dross	Fatigue strength reduction factor 1.00 0.54	
	Source: (ASM Vol. 9, 1999, p. 758) Defect None Dross Micro shrinkage	Fatigue strength reduction factor 1.00 0.54 0.73	
-	Source: (ASM Vol. 9, 1999, p. 758) Defect None Dross Micro shrinkage Macro shrinkage	Fatigue strength reduction factor 1.00 0.54 0.73 0.50	
	Source: (ASM Vol. 9, 1999, p. 758) Defect None Dross Micro shrinkage Macro shrinkage Chunky graphite	Fatigue strength reduction factor 1.00 0.54 0.73 0.50 0.75	
	Source: (ASM Vol. 9, 1999, p. 758) Defect None Dross Micro shrinkage Macro shrinkage Chunky graphite Anomalies	Fatigue strength reduction factor 1.00 0.54 0.73 0.50 0.75 0.83	

	Stress amplitude	Stress mean	Number of	
	[MPa]	[MPa]	cycles/repetition	
	100	200	10000	
	50	0	5000	
	100	100	20000	
	200	-100	2000	
0	stress concentration radius is $r = 4 mm$. radius of 100 mm an w many repetitions of lo probability of fatigue component for proba	factor at a notch on the The surface finish is ma d operates at temperate bading can be loaded of crack initiation? That is ability of survival 99 %?	part is $K_t = 2$. The note achined. The shaft has a ure T = 500 °C. In the component for a 1 s, what is the fatigue life	ch a % of the

