

Stress- and strain-based approact	ches to
1	fatigue

Stress-based approach	Strain-based approach
Use nominal stress	Use local stress and strains (local yielding)
Elastic concentration factors	Cyclic stress-strain relationship at notch
Nominal stress vs life (S-N)	Strain vs life ($\varepsilon - N$)
Good for long lives	Good for short and long lives
Mean nominal stress	More rational & accurate handling of mean stress
	effect by employing the local mean stress at the
	notch
No specific analysis of crack propagation (growth)	No specific analysis of crack propagation (growth)
Can not model the sequence effect of severe	Best method to model sequence effects of severe
events	events
events	events

INVESTMECH

6

Monotonic vs cyclically stable values				
Monotonic parameters	Cyclically stable parameters			
n	n'			
Н	H'			
These are used to define the stress-strain curve	These are used in the subsequent cyclic loading			
Parameters determined from a monotonic test – one reversal (half cycle)	Determined from the stable hysteresis loop			
$\varepsilon_a = \frac{\sigma_a}{E} + \left(\frac{\sigma_a}{H'}\right)^{\frac{1}{n'}}$				
6/19/2024	21			

Strain life & mean stress compensation INVESTMECH Calculate the zero-mean-stress-equivalent fatigue life, N* • from strain-life equation $\varepsilon_a = \frac{\sigma'_f}{E} (2N^*)^b + \varepsilon'_f (2N^*)^c$ Calculate the mean stress-compensated endurance (fatigue life), N_f , as follows $N_{mi}^* = N_f \left(\frac{\sigma_a}{f(\sigma_a, \sigma_m)}\right)^{\frac{1}{b}}$ $N_f = N_{mi}^* \left(\frac{\sigma_a}{f(\sigma_a, \sigma_m)}\right)^{-\frac{1}{b}}$ Where: Fatigue life of non-zero mean stress loaded part Fatigue life for zero mean stress calculated from this equation Function that calculates the equivalent completely reversed stress amplitude N_f N_{mi}^* $f(\sigma_a,\sigma_m)$ 6/19/2024 22

INVESTMECH			Material properties
Material propert found from Dow	ties of RQC-100 /ling Table 14.1) steel is	
Parameter	Value	Unit	
σ_o	683	MPa	
σ_u	758	MPa	
σ_{fB}	1 186	MPa	
%RA	64		
Е	200 x 10 ³	MPa	
Η'	903	MPa	
<i>n'</i>	0.0905		
σ_{f}'	938	MPa	
b	-0.0648		
ε'_f	1.38		
C	-0.704		
6/19/2024			43

