

Constant amplitude alternating stress loading parameters INVESTMECH Maximum stress: omax 150 Minimum stress: σ_{min} omax Stress range: 100 $\Delta \sigma = \sigma_{max} - \sigma_{min}$ Stress amplitude: $\sigma_{max} - \sigma_{min}$ σ_{a} $\sigma_a = \frac{\sigma_{max} - \sigma_{max}}{2}$ 50 Mean stress: $\sigma_m = \frac{\sigma_{max} + \sigma_{min}}{c}$ Δσ **↓***σ*, 2 Stress ratio: 0 $R = \frac{\sigma_{min}}{\sigma_{max}}$ Amplitude ratio: $A = \frac{\sigma_a}{\sigma_m}$ -50 omin -100 L **Completely reversed:**
 100
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 Note, for nominal stress away from notches, the symbol S
 $R = -1; A = \infty$ Zero to max: R = 0; A = 1<mark>is used</mark> Zero to min: $R = \infty$; A = -16/18/2024 4

VESTMECH	Consta dเ	ants for uctile e unnoto	stress- ngineer ched axi	life ing al s	cur me speo	ves f tals c cimer
Material	Yield strength [MPa]	Ultimate strength [MPa]	True fracture strength [MPa]	$\sigma_a =$	$= \sigma'_f (2N_f$	$\left(\right)^{b} = AN_{f}^{b}$
	σο	σ_u	$\tilde{\sigma}_{fB}$	σ'_f	A	b
Steels:						
SAE 1015 (normalized)	228	415	726	1 020	927	-0.138
Man-Ten (hot-rolled)	322	357	990	1 089	1 006	-0.115
RQC-100 (roller, Q &T)	683	758	1 186	938	897	-0.0648
SAE 4142 (Q& T, 450 HB)	1 584	1 757	1 998	1 937	1 837	-0.0762
AISI 4340 (aircraft quality)	1 103	1 172	1 634	1 758	1 643	-0.0977
Other Metals						
2024-T4 AI	303	476	631	900	839	-0.102
Ti-6Al-4V (solution treated and aged)	1 185	1 233	1 717	2 030	1 889	-0.104
Notes: 1. Units are in MPa ex 2. Parameters obtaine reversed axial load	ccept for the dim d by fitting test ling.	nensionless expor data for unnotche	ent b. d axial specimens te	ested und	der comp	oletely
	Source: (E	owling, 2013, pp.	424, Table 9.1)			

Material	m _e	N _f [cycles]
Aluminium alloys	0.40	5×10 ⁸
Low- and intermediate-strength steels	0.50	10 ⁶
Cast irons	0.40	10 ⁷
Wrought magnesium alloys	0.35	10 ⁸
Titanium alloys	0.5	10 ⁷
Source: (Dowling, 2013)	, p. 502)	

122171022 412 422 717 -	Applicability	Juvinall (2006)	Budynas (2011)
Bending fatigue	Steels, $\sigma_{\mu} \leq 1400 \text{ MPa}^1$	0.5	0.5
limit factor:	High-strength steels	≤ 0.5	$\sigma_{erb} = 700 \text{ MPa}$
m _e	Cast irons; Al alloys if $\sigma_u \leq 328 \text{ MPa}$	0.4	
	Higher strength Al	$\sigma_{erb} = 131 \text{ MPa}$	
Magnesium alloys	Magnesium alloys	0.35	
Load type	Bending	1.0	1.0
factor:	Axial	1.0	0.85
m _r	Torsion	0.58	0.59
Size (stress	Bending or torsion ^{2,3,4}	1.0 (d < 10 mm)	$1.24d^{-0.107}$
gradient) factor:		$0.9 (10 \le d \le 50)$	(3 < d < 51 mm)
m _d		000004900 - 1900010994 0	
	Axial ^{2,3}	0.7 to 0.9 $(d < 50)^5$	1.0
Surface finish	Polished	1.0	1.0
factor:	Ground ⁶	See Fig. 10.10	$1.58\sigma_{\mu}^{-0.085}$
ms	Machined ⁶	See Fig. 10.10	$4.51\sigma_{\mu}^{-0.265}$
Life for fatigue	Steels, cast irons	106	106
limit point:	Aluminum alloys	5×10^{8}	
N _e , cycles	Magnesium alloys	108	-

